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ABSTRACT
Applying machine learning and data mining algorithms over data
distributed in multiple sources is challenging. One complication is
to perform data analysis without compromising personal informa-
tion, which is a primary concern in healthcare applications. Another
issue involves communication overhead incurred from the transfer
of raw data from one party to others for conducting centralized data
mining. In healthcare applications, we are particularly interested in
running data mining algorithms over big data without disclosing
sensitive information about data subjects due to privacy and legal
concerns. In this paper, we consider the classification problem and
show how the Extremely Randomized Trees (ERT) algorithm could
be adapted for settings where (structured) data is distributed over
multiple sources. We propose the Privacy-Preserving Distributed
ERT approach for privacy-preserving utilization of the ERT algo-
rithm in a distributed setting. To the best of our knowledge, this
is the first application of the ERT algorithm in the distributed set-
ting, with privacy consideration (without sharing the raw data or
intermediate training values), without any loss in classification
performance.
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1 INTRODUCTION
In many real-world applications, such as in healthcare systems, data
is inherently distributed over an arbitrary number of sources in-
stead of being stored in a central database. It is not straightforward
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to apply data mining algorithms in situations where distributed data
cannot be transferred to a central location due to communication
overheads, as well as privacy concerns. Figure 1 shows one such
scenario and environment for this problem. The figure illustrates
a setting where hospitals need to apply data mining methods for
extracting useful patterns from patients’ data. Although individual
hospital information systems may be able to locally store health
information and perform data mining with their limited resources,
it is a necessity to share health information across hospitals to
fully exploit the learning capacity of the data mining techniques.
However, this is a challenging task due to privacy and legal con-
cerns. Hospitals often need to comply with privacy regulations
that restrict sharing health information about patients with other
parties [13, 16, 19]. A similar problem exists when the data is stored
on patients’ personal devices, such as mobile phones or wearable
devices with limited resources [8, 21–23]. How can we utilize large
amount of healthcare data stored in an arbitrary number of sources
for data mining without disclosing the private information of the
subjects? In this paper, we address this problem by developing a
novel approach for privacy-preserving data mining over distributed
(structured) healthcare information.

Traditionally, it was assumed that all sources holding part of
the data may share their information with a trusted party. How-
ever, sharing sensitive data with trusted parties is not a feasible
assumption in many scenarios. In order to address the privacy
concern, one solution would be to perturb data and share it. How-
ever, perturbation-based solutions do not provide absolute data
privacy and utility because the privacy will not be preserved if
the perturbation is not sufficient and the data utility will decrease
if the perturbation is not controlled precisely [4, 26]. Similarly,
anonymization techniques, e.g., [1, 14, 17, 24], share an altered ver-
sion of data to prevent the re-identification of data subjects [10].
Nevertheless, there is always a trade-off between data privacy and
utility in these techniques [4]. Therefore, such techniques have
limited applicability. Moreover, communication and computational
overheads would still be a problem for the approaches we discussed
above, especially when dealing with large scale data.

There exist several data mining algorithms that utilize the in-
direct use of raw data. One such approach is the cryptographic
technique and secure multi-party computation method for conduct-
ing privacy-preserving data mining [5, 11, 25]. However, they are
inefficient when dealing with big data, due to extreme communica-
tion/computation costs [26]. Other techniques have been proposed
to address communication/computational overheads of the stated
privacy-preserving data mining algorithms, e.g., [7, 12, 18]. These
solutions provide privacy as well as efficiency w.r.t. communication
and computational overheads. Nevertheless, the data mining algo-
rithms should be modified, depending on the possibility to support
applications in distributed settings, which may negatively affect
the machine learning model’s performance.
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Figure 1: Overview of the environment for learning from
structured data distributed over several parties

In this paper, we target the problem of learning from multiple
data holders, without explicit sharing of the raw healthcare informa-
tion. We assume that the learning data is horizontally partitioned,
i.e., different records of data are stored on different sources. We
consider the classification problem, in which each data record has
one category as the target. We consider that data is structured, i.e.,
it can be stored in spreadsheets, and contains categorical attributes,
e.g., gender or mental-disorder history, and numerical attributes,
like age or frequency and duration of pathological episodes. We
focus on the class of tree-based algorithms that have been shown to
consistently outperform or to be on a par with the other state-of-the-
art techniques when it comes to structured data [3, 15]. To learn
from such horizontally-partitioned structured data, we propose
privacy-preserving distributed extremely randomized trees (PPD-
ERT). We first extend the ERT algorithm [9] to a distributed setting,
to enable learning without explicit sharing of the raw data. We
then introduce a secure aggregation technique over the distributed
ERT algorithm to avoid any information leakage. We evaluate the
proposed solution experimentally and compare the results against
the state-of-the-art techniques.

2 PRIVACY PRESERVING DISTRIBUTED ERT
This section presents the proposed solution which is based on
Extremely Randomized Trees (ERT) [9] algorithm, and discusses
the procedure of learning an ensemble of decision trees based on
the ERT algorithm in the discussed settings. Our main contributions
w.r.t. the traditional ERT algorithm are:

• We extended ERT to the distributed setting.
• We employed a security layer by utilizing SMC techniques.

2.1 Initialization and Initiation
In the initialization phase, the mediator starts the process of leaning.
The mediator initiates and mediates the overall learning process. It
begins with sharing the global and personal random seeds with data
holder parties. The mediator will then repeatedly learn decision
trees based on our privacy-preserving distributed ERT algorithm.

In the ERT algorithm, we have two parameters of randomness
for learning a weak classifier. First, we need to randomly select
several attributes, among all possible data attributes, for selecting
candidate decision nodes at every step of building our decision
tree. Second, a random splitting point for every attribute in the
candidate decision node is required. The data holder parties and the
mediator are required to have the same candidate decision nodes at
every step of learning a decision tree. Therefore, instead of making
these randomly-made candidate decision nodes in the mediator
and sharing them with all parties for further tasks, we share a
common random seed that all parties, including the mediator, use
to locally generate these candidate decision nodes. Since all parties
use a common random seed, i.e., the global random seed, they
generate the same candidate decision nodes at every step, without
any communication overhead. Moreover, for the secure aggregation
of partial results, described further in Section 2.3, each data holder
party and themediator share a personal random seed. These random
seeds are exclusive and private for each data holder party. Only
the data holder party and the mediator have access to this personal
random seed.

2.2 The Process of Learning One Decision Tree
The learning of a decision tree based on the privacy-preserving dis-
tributed ERT algorithm is a recursive procedure, which is executed
top-down, starting from the root and ending at the leaves.

The mediator generates the candidate decision nodes, for build-
ing the decision tree, after receiving the results from the data holder
parties to select the best candidate among them. The candidate de-
cision nodes are generated randomly based on the global random
seed. Several attributes from the dataset’s possible attributes are
selected for candidate decision nodes. Then, each candidate deci-
sion node’s splitting points are selected. We assume that all parties
already have the possible categories and ranges for each attribute.

To decide the candidate decision nodes for each branch, the
mediator requires the collective outcome of the classification with
candidate decision nodes from all data holders on all their data.
By having the combination of data record labels for each branch,
the mediator can both decide if we require a leaf at that place or
if we should calculate the information gain. The mediator sends a
request to the first data holder party and waits for receiving the
aggregated result from the last party through secure aggregation
described in Section 2.3. The aggregated results are two vectors,
one for each branch, representing the combination of data record
labels after classification with each candidate decision node.

Having the aggregated results, the mediator determines if a
decision node is required for that place in the tree. If all the labels
are the same or if the number of received labels is less than the
threshold parameter in the ERT algorithm, the mediator puts a
label on that place, as a leaf. Otherwise, the mediator calculates
the information gain of each candidate decision node based on
the results from data holder parties. It then selects the candidate
decision node with the highest information gain and informs all
parties about this. The selected node will be used to build the tree
at the mediator. After selecting the best decision node candidate,
the same process is performed for each of the branches.
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This process leads to learning a single decision tree; we repeat
the same process for having an ensemble of decision trees.

2.3 Secure Aggregation of Results From Parties

We adopt an SMC technique in our proposed distributed ERT algo-
rithm to avoid sharing the vectors representing the combination of
the data record labels for each candidate decision node and each
branch in each data holder party. In addition to the provided privacy
by not sharing the raw values of data attributes, which is by con-
struction, adoption of the SMC technique for aggregating the partial
results from data holder parties contributes to privacy preservation.
In an extreme example, suppose our data has one sensitive attribute
in it, e.g., having previously conducted transgender surgery, and
each data holder party has only one record on it. Then, sharing
the partial results from one party, i.e., the vectors representing the
combination of data record labels for one candidate decision node,
can reveal sensitive information. If the candidate decision node is
"whether the record falls into the transgender branch or not," the
mediator can infer if that individual with the specified record has
conducted transgender surgery. Therefore, to avoid such vulner-
abilities, we adopt an SMC technique for aggregating the partial
results from the data holder parties. We consider privacy among
collaborating parties, but we assume no active external adversaries.

We now describe the proposed technique. The mediator shares a
personal random seed with each data holder party through secure
communication, to avoid sending and receiving exclusive random
numbers between the mediator and each party.

Then, in the process of learning a decision tree, the mediator
sends the request for secure aggregation to the first party. The
party makes calculations described earlier and obtains two resulting
vectors for each decision node. Afterwards, the party generates
random integer masks based on its personal random seed and adds
it to the results from the previous step. If the data holder party
receives partial results vectors from the previous data holder party,
then it also aggregates those values to the calculated vector in the
previous step. Eventually, the party passes its outcome to the next
party or mediator if that party is the last one.

Finally, the mediator receives the masked aggregated results
from the last party. Since the mediator has the personal random
seeds, it generates the same randommasks as generated on the data
holder parties. Then, the mediator subtracts those random masks
from the received masked aggregated result. At this step, without
sharing the partial information about data labels by each data holder
party, the mediator has the aggregated vectors representing the
combination of data record labels for each branch of each candidate
decision node for all parties.

3 EVALUATION AND DISCUSSION
In this section, we evaluate our proposed approach w.r.t. classifica-
tion performance, scalability and overhead, and privacy criteria [2].
We compare our approach with [7] since, similar to our approach,
it is a tree-based method, employing SMC techniques for secure
aggregation of partial results, to address classification problems in
scenarios where data is horizontally partitioned.

Table 1: Comparison of Classification Performance

Distributed Approaches Centralized Approaches
Dataset 𝑀𝑒𝑡𝑟𝑖𝑐 𝑃𝑃𝐷-𝐸𝑅𝑇 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 𝐼𝐷3 [7] 𝐸𝑅𝑇 [9] 𝐼𝐷3[20]

Multiple Features 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 98.3% 88% 98.3% 93.5%
𝐹1-𝑆𝑐𝑜𝑟𝑒 98.3% 𝑁𝑜𝑡 𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑 98.3% 93.5%

Nursery 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 98.1% 95.7% 98.1% 99.5%
𝐹1-𝑆𝑐𝑜𝑟𝑒 95.3% 𝑁𝑜𝑡 𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑 95.3% 79.2%

First, the privacy-preserving distributed ERT algorithm basically
breaks the task of the centralized ERT algorithm into several parts
distributed on different nodes but does not introduce any nega-
tive impact on performance by construction. Secondly, the SMC
technique adopted to introduce privacy does not change the re-
sult of aggregation as opposed to the existing differential privacy
techniques. The resulting vectors, representing the combination of
record labels for each branch, aggregated securely by the described
SMC technique, yields the same results as aggregation without
adopting any SMC techniques. Therefore, the classification per-
formance of our privacy-preserving distributed ERT remains the
same as the centralized ERT. However, the proposed approach in
[7] suffers from a decline in classification performance caused by
its underlying learning algorithm, i.e., the ID3 algorithm.

We now evaluate the classification performance of our proposed
approach. Similar to [7], we utilize Multiple Features and Nursery
datasets [6] and use 2/3 of the data for learning and the rest for
the test. We adopt the F1-Score and accuracy as our classification
performance metrics. The accuracy of the proposed approach in
[7] is also reported here for comparison. For the Multiple Features
dataset, since the number of records for each class is the same,
the accuracy is a proper metric for evaluating the classification
performance. However, since the Nursery dataset is imbalanced,
the accuracy is not a reliable measure; hence, we also consider the
F1-Score. Table 1 compares the classification performance of our ap-
proach PPD-ERT with the one in [7], with their best setting where
128 parties are collaborating. Moreover, the classification perfor-
mance of centralized versions of ERT [9] and ID3 [20] algorithms,
i.e., the underlying standard learning algorithms for PPD-ERT and
the proposed approach in [7], are also provided for comparison.

In our experiments, on the PPD-ERT, and the ERT algorithm, we
learn an ensemble of 25 decision trees. For the number of candi-
date decision nodes’ parameter in the algorithm, we used 5-fold
cross-validation for the model selection (concerning classification
performance measured by the F1-Score). For the Multiple Features
dataset, we generate 65 candidate decision nodes (proportionate to
10% of the number of features in the dataset) at every step, and for
the Nursery dataset, eight candidate decision nodes (proportionate
to 90% of the number of features in the dataset) are generated. The
results in Table 1 for PPD-ERT, ERT, and ID3 are the average of
10 rounds of learning and evaluation. In the case of the Multiple
Features dataset, the PPD-ERT algorithm outperforms the proposed
technique in [7] by 10.3%. For the Nursery dataset, the PPD-ERT
outperforms the method in [7] by 2.4%. However, in the case of
the Nursery dataset, since the data is imbalanced, using the accu-
racy metric may lead to misleading results. When considering the
F1-Score metric, which is a reliable metric even for imbalanced
datasets, the simple ID3 algorithm that always outperforms the
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Table 2: Communication Complexity of Different SMC Ap-
proaches

Approach Party Communication Total Communication
Send Receive

NOSMC Data Holders 1 0 (n-1)×1 + 1×(n-1)Mediator 0 n-1

PPD-ERT All 1 1 n×(1+1)

proposed method in [7] shows 16.1% lower performance compared
to the PPD-ERT approach.

We now discuss the privacy and overhead of our proposed ap-
proach. We adopt an SMC technique to avoid direct sharing of
the vectors, representing the combination of record labels for each
candidate decision node, with other parties and the mediator. We
compare the communication overhead and privacy of our adopted
SMC technique against the NOSMC approach. Table 2 presents the
communication overhead of both methods. In the table, 𝑛 is the
number of parties, and the communication overheads in the table
are for one round of secure aggregation.

In the first approach (NOSMC), no SMC technique is adopted,
and all the values are directly shared with the mediator and known
to it. This approach has the lowest possible communication cost and
one colluding parties, and is considered as a baseline. On the one
hand, our approach’s communication overhead is from order 𝑂 (𝑛),
which is from the same order as NOSMC. On the other hand, our
technique offers interesting privacy features compared to NOSMC.
Firstly, it takes three parties (or two parties in case the data holder
party is the first or last) for collusion. Secondly, one of the colluding
parties needs to be the mediator, which can be assumed as an honest
party in many scenarios. In the case of a secret value revelation,
we know that the mediator has been involved in the collusion.

We demonstrate that our proposed PPD-ERT approach provides a
solution to classification of structured data distributed over multiple
sources with privacy-preservation consideration. In particular, our
approach does not negatively affect the classification performance
compared to the centralized ERT algorithm.

4 CONCLUSION
In this paper, we have extended the ERT algorithm to ensure pri-
vacy in a distributed setting, where data is held by several parties.
In our proposed algorithm, on the one hand, the data holders do not
share their data values with other parties for learning. On the other
hand, the required partial-information from data holders, the com-
bination of labels after splitting their records by candidate decision
nodes, which has a low risk of revealing important information, is
securely aggregated to minimize the likelihood of inference of sensi-
tive information by an adversary. We have evaluated our proposed
algorithm extensively and demonstrated its efficiency in terms of
prediction performance, scalability and overheads, as well as pri-
vacy. We show that our approach outperforms the state-of-the-art
distributed ID3 by up to 10.3% in terms of classification performance
while ensuring scalability and privacy.
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