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Abstract—Machine learning (ML) generally requires a sub-
stantial amount of data to reach or surpass human-level perfor-
mance. However, data collection and annotation by experts are
known to be costly and time-consuming, which often leads to
suboptimal performance for ML algorithms. One approach to
tackle this challenge is to adopt patient-annotated data on each
patient’s device in a federated learning (FL) setting. However,
this approach comes with certain challenges. For instance, in
the case of epilepsy monitoring, patient-annotated data is known
to involve inaccuracies, i.e., patients may lose consciousness and
annotate a seizure with substantial delay compared to the seizure
onset. To address this challenge, we propose an FL framework for
epileptic seizure detection with noisy patient-annotated data. We
evaluate our approach in the case of epileptic seizure detection
and show that our proposed method achieves up to 32.63% higher
accuracy, 32.95% higher specificity, and 22.28% higher F1 score
compared to the model trained on the noisy dataset.

Index Terms—federated learning, wearable devices, noise,
electroencephalogram (EEG), seizure detection.

I. INTRODUCTION

The performance of ML models is influenced by several
factors, including the learning algorithm, the complexity of
the model (e.g., the depth of deep neural networks) and
design parameters such as the number of hidden nodes [1].
However, the most critical factor often lies in the data itself, as
algorithms derive their models from this data. Key aspects such
as the size and quality of the training data significantly affect
the performance of the model [2]–[5]. Despite its importance,
collecting large amounts of high-quality data poses significant
challenges, particularly in the medical domain.

For medical data, one major challenge is the cost and
effort required to collect and annotate accurately. For example,
acquiring clean physiological signals such as electrocardio-
gram (ECG) or electroencephalogram (EEG) often requires
the hospitalization of patients for extended periods. Expert
clinicians must meticulously review and label the collected
data. This process becomes even more challenging in condi-
tions like epilepsy, where seizures are rare and unpredictable
events. To capture data during seizures, patients may need
to remain hospitalized for prolonged periods, often with re-
duced medication to increase the likelihood of occurrence of
seizures. Moreover, obtaining sufficient data from multiple
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seizure episodes to enhance ML outcomes requires even longer
hospitalization. These factors exacerbate the issue of limited
data, which restricts the complexity and overall performance
of ML models.

An approach to addressing this challenge is the use of
wearable devices that allow patients to collect and annotate
their data without requiring daily hospitalization. These sys-
tems enable patients to continue their routines at home, work,
school, and other environments while collecting data contin-
uously. Another advantage is that data collected in hospitals
may not accurately reflect typical physiological patterns of a
patient, since it only captures data while the patient is resting
in a controlled hospital setting. In contrast, wearable systems
provide data that more realistically represent the daily life of
a patient. However, wearable systems only have access to the
patient’s data by using the device, limiting the data for accurate
detection of seizures. To enable training of robust ML models,
while protecting patient privacy and avoiding the inefficiency
of transferring large volumes of data, FL frameworks have
been adopted in several studies [6]–[8].

In FL on wearable systems for seizure detection, the data is
typically annotated by patients rather than by medical experts.
However, patient annotations are often highly unreliable. For
example, in the case of epilepsy, seizures can be annotated late
or completely missed if the patient is unconscious during the
event [9]. This presents a significant challenge for the training
of ML models. While methods for handling noisy labels have
been explored in other applications [10]–[13], their application
in the context of epilepsy and FL remains unexplored.

In this paper, we propose an FL framework designed for
patient-annotated data in epilepsy. Our approach addresses the
challenge of noisy labels, where patients can identify a general
period during which a seizure occurred but may not precisely
pinpoint the seizure event. To address this, we integrate well-
established domain knowledge in ictal EEG signals into the
FL process to estimate the confidence level for each label.
This approach is inspired by [14], which highlights how
the spectral power of EEG signals across various frequency
bands can quantify changes associated with epileptic seizures,
providing valuable insights for seizure detection. By leverag-
ing these spectral analyses, we aim to refine seizure event
identification within patient-annotated datasets. We evaluate
our methodology using the publicly available Physionet CHB-
MIT scalp EEG database [15], [16]. Our experimental results
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demonstrated that, for sample-based evaluation (described in
Section IV-A5), our proposed method achieves up to 32.63%
higher accuracy, 32.95% higher specificity, and 22.28% higher
F1 score compared to the model trained on the noisy dataset.
For event-based evaluation (described in Section IV-A5), our
proposed method achieves up to 39.7% higher precision,
31.2% higher F1 score, and 173.0 fewer FP/24h compared
to the model trained on the noisy dataset.

In summary, our work advances the state-of-the-art in ad-
dressing the noisy label problem in seizure detection in the
context of wearable devices and FL. Our approach is scalable,
practical, and easy to implement and requires minimal hyper-
parameter tuning. It offers a promising solution for mitigating
the effects of label noise in real-world applications and can be
seamlessly integrated into future FL frameworks for seizure
detection.

II. RELATED WORKS

FL is a setting for training ML models in scenarios where
training data is decentralized [17]. The term federated learn-
ing was introduced in 2016 by McMahan et al. [18], [19].
Unlike traditional centralized approaches, FL allows data to
remain distributed across various clients or parties, such as
patients’ personal devices, while collaboratively learning a
global model. This process is typically orchestrated by a cen-
tral server, but ensures that raw data never leaves local devices.
By adhering to the data minimization principle outlined in the
data protection guidelines [20], [21], FL significantly mitigates
the privacy risks inherent in centralized ML systems [19].

In recent years, FL has gained significant attention, particu-
larly in privacy-sensitive domains such as healthcare, where
data sharing is often restricted by ethical and regulatory
requirements [22]–[24]. Although FL methods are commonly
based on neural networks, the setting has been successfully
extended to other ML algorithms, including tree-based ap-
proaches [25]–[29]. Comprehensive reviews of FL applications
in healthcare are available in [30]–[33]. A notable recent
application of FL in healthcare is its use in seizure detection
[6]–[8], which is the main focus of this paper.

Epilepsy is a neurological disorder that affects around 50
million people worldwide, according to the World Health Or-
ganization (WHO) [34]–[36]. Despite advances in antiepileptic
drugs, approximately one-third of people with epilepsy (PWE)
continue to experience recurrent seizures. These seizures sig-
nificantly affect their quality of life and, in severe cases, may
result in sudden unexpected death in epilepsy (SUDEP) [37].
On average, PWE face a two- to three-fold higher risk of
premature death compared to the general population [38].
Mobile health monitoring using wearable devices offers a
promising solution for real-time seizure detection, allowing
alerts to family members and caregivers for timely intervention
[39]–[46]. Research on wearable devices for the monitoring of
ambulatory epilepsy has progressed, with prototypes already
being developed [14], [47].

The growing use of ambulatory and long-term EEG moni-
toring underscores the urgent need for high-quality automated

seizure detection algorithms based on electroencephalography.
Advances in ML and the availability of EEG datasets from
PWE have driven progress in this field. However, annotated
EEG datasets for seizures remain scarce and are often in-
accessible due to strict legal requirements surrounding per-
sonal health data [48]. FL offers a promising approach to
leverage seizure data collected by wearable systems while
preserving data privacy. Yet, FL faces unique challenges as
patient-annotated data is inherently noisy and unreliable. For
example, seizures may be annotated late or completely missed,
particularly if the patient is unconscious during the event
[9]. Addressing these challenges is critical for advancing the
reliability and effectiveness of FL in seizure detection.

The handling of noisy labels has been studied in [10]–
[13]. For instance, [13] introduces Pi-DUAL, an innovative
architecture designed to address label noise in deep learning
by leveraging privileged information (PI) available exclusively
during training. Pi-DUAL employs a dual-path network archi-
tecture consisting of a prediction network, optimized for clean
labels, and a noise network, which focuses on handling noisy
annotations. The gating mechanism in Pi-DUAL adaptively
balances the influence of the clean prediction network and
the noise network, minimizing the impact of noisy labels
while leveraging privileged information. This design helps to
improve model robustness and generalization. Although Pi-
DUAL has proven effective in addressing label noise in general
deep learning applications, its applicability to the specific
challenges of seizure detection, particularly in FL settings with
patient-annotated data, has not been explicitly explored.

The problem of annotation of seizures has been explored
in [49], where a self-learning methodology for the detection
of epileptic seizures without medical supervision is presented.
The authors propose a minimally-supervised algorithm to label
seizures on edge devices automatically. In their approach,
patients confirm that a seizure occurred within the last hour
by pressing a button on a smartphone or mobile device after
recovering from the seizure. Additionally, the average duration
of the patient’s seizures, typically provided by medical experts,
is incorporated into the labeling process. EEG signals are
analyzed to extract features indicative of seizures, such as
frequency-domain power features. Using these features, the
position of the seizure within the EEG recording is determined
through a clustering scheme. The identified seizure windows
are then labeled based on the clustering results and the patient-
reported average seizure duration. This method allows for a
degree of automation in seizure annotation while still utilizing
minimal patient input.

In [50], the authors introduce the Maximum-Mean-
Discrepancy Decoder (M2D2), a method designed to help
medical professionals by automatically localizing and labeling
seizures in long EEG recordings. The approach processes a
lengthy EEG signal and identifies a timestamp t, indicating
that a seizure probably occurred within t ± ∆ minutes. This
significantly reduces the search effort for experts, who only
need to review a 2∆-minute interval instead of the entire
recording. Unlike traditional methods that rely on patient-



specific data or manual labels, M2D2 employs a statistical tool
called maximum-mean-discrepancy (MMD). This technique
enables the system to detect regions prone to seizures by
comparing patterns in the EEG signal, identifying segments
most likely associated with seizures. This approach streamlines
the annotation process and reduces the dependency on manual
intervention.

In summary, the advancements in FL, seizure detection,
and methods for handling noisy labels have laid a strong
foundation for addressing critical challenges in healthcare
applications. However, significant gaps remain, particularly in
managing noisy patient-annotated data within FL frameworks
for seizure detection. By addressing these challenges, our
work aims to enhance the reliability and effectiveness of FL
for seizure detection, paving the way for scalable, real-world
implementations that improve patient outcomes.

III. METHOD

In this section, we present the details of our approach.
We begin with a brief motivation and formalization of the
problem, followed by a detailed explanation of our proposed
methodology.

A. Motivation and Problem Formulation

Currently, the gold standard for epilepsy monitoring is
video-electroencephalogram, which combines EEG recordings
of brain activity with closed-circuit video observation. How-
ever, long-term EEG monitoring outside hospital settings is
challenging. Scalp-EEG systems, such as hats and caps, are
intrusive and can cause discomfort and social stigmatization,
limiting their suitability for extended monitoring periods [51].
Although intracerebral or subcutaneous EEG allows for very
long-term monitoring, it is invasive, expensive, and viable for
only a small subset of patients [52], [53].

Recent advances have introduced lightweight, non-
stigmatizing wearable systems, with prototypes already
available [14], [47]. These systems not only enable real-time
patient monitoring, but also facilitate the collection of data
during daily life activities. This approach has dual benefits:
it allows the collection of epilepsy data on a broader scale
and provides a more accurate representation of patients’
real-life conditions, compared to data collected in controlled
environments. However, utilizing data collected from such
wearable systems for training ML models to detect epileptic
seizures presents several challenges. First, the data is
inherently decentralized and cannot be centralized due to
regulatory privacy requirements. FL frameworks are thus
necessary to analyze this distributed data while maintaining
privacy and complying with regulations. Second, the data is
annotated by patients rather than medical experts, leading
to inaccuracies in labels. Patients may not precisely identify
seizure events, either due to delays in annotation or inability
to pinpoint exact timestamps, further complicating the training
of ML models.

Problem Formulation: We consider an FL setting involving
n clients, where each client represents a patient. Patients
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Patient 1 Patient 3

Seizure
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Annotation

Fig. 1: Overview of the Scenario

collect their EEG signals using wearable devices, such as the e-
Glass system [14], which utilizes four electrodes to record two-
channel EEG signals. The overall FL scenario is illustrated in
Figure 1.

In this setting, when no seizure event occurs, the patient
does not report a seizure, allowing negative samples to be
correctly labeled. However, during a seizure event, patients
can only approximate the seizure timestamps. This limitation
arises because patients often lack normal consciousness during
seizures. We assume that the patient annotates a duration of D
minutes (e.g., 10 minutes) within which the seizure is believed
to have occurred, without providing precise timestamps.

For patient-reported labels, negative samples are assumed
to be accurate and used as-is. Conversely, positive labels are
considered unreliable but serve as a starting point for deriving
more accurate annotations.

B. Frequency Band Analysis and Epilepsy

Normal human EEG activity typically ranges from 1–30 Hz
in frequency, with amplitudes between 20–100 µV. This range
is divided into distinct frequency bands: alpha (8–13 Hz), beta
(13–30 Hz), theta (4–7 Hz), and delta (0.5–4 Hz). The surface
EEG shows patterns that correspond to various states such as
sleep, wakefulness, and specific pathophysiological processes
like seizures. These patterns are defined by the frequency and
amplitude of the electrical signals [54].

For example, alpha waves of moderate amplitude are asso-
ciated with relaxed wakefulness and are most prominent in
the parietal and occipital regions. In contrast, beta activity
with lower amplitude is more prominent in the frontal areas
and increases during intense mental activity. When a relaxed
individual becomes alert, the EEG undergoes desynchroniza-
tion, marked by a decrease in alpha waves and an increase in
beta activity. Theta and delta waves are typically seen during
drowsiness and early stages of slow-wave sleep, but their
presence during wakefulness can indicate brain dysfunction
[54].



The relationship between EEG signal power in specific
frequency bands and epileptic seizures has been explored in
studies such as [14], [49], [50]. In particular, an increase in
power within the delta and theta frequency bands is often
associated with seizure events. During seizure episodes, the
normalized power of the delta band shows a marked increase,
demonstrating a strong correlation between frequency band
power, particularly in the delta band, and seizure activity.

C. Frequency Band Power Calculation

To estimate the Power Spectral Density (PSD) of EEG
signals, we can use a method such as the Welch method [55].
In this method, the signal is divided into overlapping segments
and windowed using a function such as the Hanning window
[56]. The PSD is computed for each segment, and the average
is taken:

P (fn) =
1

K

K∑
k=1

Ik(fn),

Ik(fn) =
1

LU

∣∣∣∣∣∣
L−1∑
j=0

Xk(j)W (j)e
−2πijn

L

∣∣∣∣∣∣
2

,

here, Xk(j) represents the k-th segment of the signal, W (j)
is the window function, and U is the normalization factor for
the window (defined as: U = 1

L

∑L−1
j=0 W (j)2). Band power for

specific frequency bands (e.g., delta: 0.5Hz–4Hz) is computed
by integrating the PSD over the desired frequency band:

Band Power =
∫ fhigh

flow

P (f) df.

D. Frequency Band Power As Metric for Recognizing Noise

As described in Section III-A, positive annotations are noisy,
and this frequency band power metrics are used to address
them. For each patient and each seizure event, D minutes of
data are annotated, within which the seizure is known to have
occurred. The EEG signals within this D-minute duration are
divided into several windows.

For each window, we calculate the delta band power (simi-
larly, this process can be applied to the theta frequency band).
The values for the windows within D are then transformed
as follows: first, we compute the mean (µ) and standard
deviation (σ) of the values. Next, we standardize the values
using the formula z = x−µ

σ . After standardization, we rescale
the values (originally centered around zero) using z+1

2 . Finally,
the rescaled values are clipped to ensure they fall within the
range zero and one. We denote this transformed metric as
Mi

fb, where fb represents the frequency band, and i indicates
that the metric corresponds to the i-th window within D.

The obtained values can be interpreted as confidence scores
for the positive labels of the windows. This metric can be
calculated in an FL setting, as each patient only needs access
to their local data for computation. Based on these calculated
metrics, several approaches can be taken to address noisy
labels. A straightforward approach involves calculating the
mean (µ′) and standard deviation (σ′) of the metrics (after
standardization and transformation) for all windows within D.
Then a threshold τ can be defined, for example, τ = µ′ + σ′,

to classify windows, similar to [44], [57]. If Mi
fb > τ , the

window and its label can be used in the training process as is.
Conversely, if the metric is below the threshold, the confidence
in the label decreases. In such cases, the sample can either be
removed, or its label flipped to zero, and the modified samples
can still be used during training.

E. Federated Learning

1) Federated Training Procedure: We employ the federated
stochastic gradient descent (FedSGD) procedure introduced in
[18], [19] to train the deep learning model. In this framework,
we have multiple clients, representing patient devices that
hold their local data, and a central server responsible for
coordinating the training process.

Our procedure involves the following steps:
(1) Band Analysis for Noisy Labels: Each client performs a

frequency band analysis on their local dataset to address
labels’ noise. The results of this analysis are used to
clean the dataset by either removing noisy samples or
flipping the labels of these samples. The cleaning method
is determined by an agreed-upon protocol established
before training begins. The cleaned dataset for client Ci

is denoted as DCi .
(2) Model Download: Each client downloads the current

global model w from the server.
(3) Mini-Batch Selection: Clients select a mini-batch of size

s (predefined at the start of training) from their cleaned
dataset for the current round j. For client Ci, this mini-
batch is denoted as bCi

j .
(4) Forward Pass: Each client performs a forward pass using

their mini-batch bCi
j and the global model w to compute

predictions.
(5) Gradient Calculation: Clients calculate gradients based

on a shared loss function ℓ (e.g., cross-entropy loss),
which is also agreed upon before training begins. The
gradient for client Ci in round j is denoted as: ∇Ci

j =

∇ℓ(w, b
Ci
j ).

(6) Gradient Scaling: Each client scales its calculated gra-
dient by the size of its cleaned dataset |DCi |: ∇Ci

scaled,j =

∇Ci
j · |D

Ci |. The scaled gradient is then sent to the server.
(7) Server Aggregation: The server collects scaled gradients

from all K clients and computes the aggregated gradient
by dividing the sum of these gradients by the total number
of samples |D|, where D =

∑K
i=1|DCi |. The aggregated

gradient is computed as: ∇j = 1
|D| ·

∑K
i=1∇

Ci
scaled,j .

(8) Model Update: The server updates the global model w
using an optimization algorithm with a learning rate η:
w ← w + η∇j .

(9) Model Distribution: The updated global model is dis-
tributed to all clients for the next round. This process
repeats starting from Step 2, continuing either for a
predefined number of rounds or until a convergence
criterion is met (e.g., validation set performance).

This iterative process enables collaborative training of the
global model across all clients while maintaining data privacy,
as raw data remains on the clients’ devices. To further enhance



privacy and prevent the sharing of raw gradients, we incorpo-
rate a secure multiparty computation scheme within our FL
framework.

2) Weighted Loss: Cross-entropy loss is a common choice
for classification tasks as it measures the difference between
the predicted probability distribution and the true class labels.
Seizure datasets are often substantially imbalanced; in such
cases, using standard cross-entropy loss, which treats all
classes equally, may lead to higher specificity but reduced
sensitivity for the minority class. To address this, weighted
cross-entropy can be employed to assign greater importance
to the positive class during training. However, in seizure
detection, maintaining high specificity (low false positive rate)
is critical. The use of a weighted loss function should be
guided by the characteristics of the dataset. For instance,
if the dataset does not exhibit a severe imbalance between
negative and positive samples, applying more weight to the
negative samples can help prioritize specificity while balancing
sensitivity.

Weighted cross-entropy loss mitigates class imbalance by
assigning weights to classes, ensuring a greater contribution
of a desired class during training. The formula is: ℓ(x, y) =
1
N

∑N
n=1−wyn log

exp(xn,yn )∑C
c=1 exp(xn,c)

, where N is the batch size, C
the number of classes, xn,c the model output (logit) for the n-
th sample and c-th class, yn the true label and wyn

the weight
of the class, typically calculated as wc = 1/fc, with fc being
the frequency of class c.

IV. EVALUATION

A. Experimental Setup

1) Dataset: For our evaluation, we utilize the publicly
accessible Physionet CHB-MIT scalp EEG database [15], [16].
This dataset comprises EEG recordings from pediatric patients
with intractable seizures. These patients were monitored over
several days following the withdrawal of anti-seizure medi-
cations to document their seizures and evaluate their eligibil-
ity for surgical intervention. The dataset includes recordings
grouped into 24 cases, collected from 23 individuals. In this
study, we focus on a wearable healthcare context, such as the
e-Glass system [14], and therefore only consider the four elec-
trodes from the F7−T7 and F8−T8 channels. Consequently,
three files from case chb12, which contain unipolar recordings,
are excluded. The resulting dataset includes 185 seizure events
across all patients [58], [59].

Choice of benchmark dataset and EEG channels: Despite
CHB-MIT’s limited size, this dataset remains widely adopted
in seizure detection studies due to its accessibility and the
availability of clinically annotated seizure events [8], [24],
[42], [50], [60], [61]. In this research, we only considered
four electrodes and two channels, i.e., F7-T7 and F8-T8
channels. This choice reflects the focus of our study on
wearable settings, where the number of electrodes is typically
limited. This limitation stems from the need for wearable
devices to be compact, unobtrusive, and suitable for ambu-
latory applications. One such device in the context of seizure
detection is the e-Glass system [14]. Specifically, the e-Glass

system uses electrodes placed at positions corresponding to
the F7-T7 (between F7 and T7/T3) and F8-T8 (between
F8 and T8/T4) channels in the CHB-MIT database.

2) Data Preparation: We make a noisy dataset based on the
problem we described in III-A, with the specifics outlined here.
Each patient’s data consists of multiple files, some containing
seizure events and others that do not. For each seizure event,
we extract D minutes of EEG signals surrounding the event,
labeling this segment with a noisy positive annotation. The
exact position of the seizure event within this D-minute
window is random.1 After selecting segments with noisy
positive annotations, we randomly extract non-seizure periods
of equal duration from files without seizure events, assigning
them clean negative annotations. In this dataset, we utilize 4-
second windows, consistent with previous research [14], [61],
with a 2-second (50%) overlap between consecutive windows.

We adopt the leave-one-out cross-validation (LOOCV) pro-
cedure for training and testing.2 In each experiment, one case
from chb01 to chb24 is designated for testing, while the
remaining cases are used for training. We use our generated
data set with noisy annotations to train the deep learning
models. However, for testing and to allow for a comprehensive
evaluation, we use all recording files rather than restricting to
2 · D minutes per seizure. This approach leads to a highly
imbalanced test set, significantly affecting some evaluation
metrics. For example, the disproportionate number of negative
samples may notably reduce the F1 score.

Type of label noise: Our method targets a specific type of
label noise, namely, temporal imprecision in positive event
annotation caused by patients losing consciousness or re-
sponding with delay. By leveraging frequency band power
analysis, we infer a confidence level for each positive label.
This mechanism improves model performance even when a
large proportion of the training data contains noisy labels.
While this work focuses on noise due to annotation delay,
our framework could potentially be adapted to handle other
types of label noise, such as mislabeling or random corruption,
by adjusting the confidence metric or incorporating additional
strategies.

3) Deep Neural Network Model: For our neural network
architecture, we employ the fully convolutional network (FCN)
introduced in [61]. The base of the FCN consists of three se-
quential blocks, each comprising a convolutional layer, a batch
normalization layer, rectified linear unit (ReLU) activation
functions, and a pooling layer. Following these three blocks,
the network incorporates two fully convolutional layers, and a
softmax output layer.

1Since the start and end of the D-minute window are selected randomly, if
the seizure event occurs near the beginning/end of a file, the extracted period
may be shorter than D. Furthermore, if two seizure events occur close to each
other within the same file, the D-minute windows may overlap. For seizure
events longer than D, only D minutes are considered; however, such cases
were rare in our experiments.

2In our evaluation, only windows that entirely fall within the ground truth
seizure annotations of the CHB-MIT dataset are considered positive for correct
annotation.



TABLE I: Sample-Based Evaluation (LOOCV): B1:Clean Data, B2:Noisy Data, M1:Noisy Data (our method: flip labels),
M2:Noisy Data (our method: remove samples/weighted loss)

Patient Accuracy Specificity Sensitivity F1 score

B1 B2 M1 M2 B1 B2 M1 M2 B1 B2 M1 M2 B1 B2 M1 M2

chb01 99.87% 60.02% 99.28% 99.85% 99.96% 59.91% 99.34% 99.98% 67.29% 98.13% 76.64% 55.14% 74.61% 1.42% 38.32% 68.21%
chb02 99.67% 56.89% 98.9% 99.45% 99.7% 56.83% 98.92% 99.48% 80.49% 100.0% 82.93% 73.17% 38.82% 0.6% 16.35% 25.53%
chb03 99.61% 66.83% 97.81% 99.4% 99.69% 66.82% 98.04% 99.66% 71.88% 71.88% 16.67% 8.33% 51.11% 1.2% 4.1% 7.27%
chb04 96.31% 72.09% 95.74% 96.65% 96.34% 72.07% 95.78% 96.69% 41.3% 90.22% 44.57% 40.22% 1.44% 0.42% 1.35% 1.55%
chb05 99.81% 74.02% 99.14% 99.75% 99.98% 73.94% 99.26% 99.95% 55.15% 94.85% 68.38% 46.32% 69.12% 2.75% 38.04% 58.6%
chb06 99.87% 44.44% 99.4% 99.82% 99.92% 44.46% 99.45% 99.87% 0.0% 13.33% 0.0% 0.0% 0.0% 0.02% 0.0% 0.0%
chb07 98.28% 82.76% 99.21% 99.48% 98.32% 82.74% 99.25% 99.53% 74.68% 92.41% 69.62% 60.76% 10.23% 1.38% 18.84% 23.36%
chb08 99.08% 78.37% 99.28% 99.28% 100.0% 78.17% 99.83% 99.96% 26.99% 94.25% 55.75% 45.58% 42.51% 9.86% 65.97% 61.31%
chb09 99.58% 83.36% 99.3% 99.49% 99.59% 83.34% 99.3% 99.49% 96.97% 100.0% 96.97% 95.45% 33.51% 1.28% 22.98% 28.77%
chb10 99.94% 55.03% 99.54% 99.81% 100.0% 55.09% 99.64% 99.98% 74.29% 26.67% 58.1% 24.76% 84.32% 0.28% 37.31% 37.68%
chb11 99.71% 76.35% 99.43% 99.46% 100.0% 76.23% 99.68% 99.82% 54.27% 95.98% 60.3% 44.22% 70.13% 4.91% 57.14% 51.16%
chb12 98.73% 38.28% 95.97% 98.17% 99.8% 37.73% 96.99% 99.25% 10.71% 83.48% 12.5% 9.38% 16.9% 3.15% 6.95% 10.97%
chb13 98.61% 54.16% 95.37% 98.46% 98.98% 54.14% 95.7% 98.82% 10.4% 60.0% 19.2% 12.0% 5.92% 1.09% 3.38% 6.15%
chb14 99.84% 69.59% 99.74% 99.73% 99.99% 69.67% 99.89% 99.88% 0.0% 16.67% 0.0% 0.0% 0.0% 0.17% 0.0% 0.0%
chb15 98.42% 62.89% 96.72% 97.89% 99.76% 62.81% 97.99% 99.2% 0.62% 69.14% 4.12% 1.85% 1.05% 4.79% 3.28% 2.31%
chb16 96.98% 62.06% 96.05% 97.42% 97.06% 62.06% 96.13% 97.5% 0.0% 71.43% 0.0% 0.0% 0.0% 0.31% 0.0% 0.0%
chb17 98.94% 69.28% 96.9% 98.6% 99.25% 69.2% 97.12% 98.9% 16.67% 90.28% 37.5% 22.22% 10.67% 2.19% 8.42% 10.81%
chb18 99.62% 77.18% 98.94% 99.76% 99.72% 77.14% 99.06% 99.92% 55.41% 93.24% 48.65% 31.08% 40.2% 1.85% 17.52% 37.4%
chb19 99.83% 77.41% 99.61% 99.81% 99.92% 77.42% 99.68% 99.95% 55.17% 72.41% 65.52% 37.93% 57.66% 1.36% 41.76% 46.81%
chb20 99.67% 60.29% 97.69% 99.4% 99.9% 60.43% 97.86% 99.65% 16.42% 10.45% 35.82% 8.96% 21.36% 0.14% 7.72% 7.5%
chb21 99.54% 85.47% 97.77% 99.34% 99.68% 85.47% 97.9% 99.5% 10.42% 83.33% 16.67% 0.0% 6.8% 1.83% 2.37% 0.0%
chb22 99.93% 67.31% 98.94% 99.71% 99.96% 67.27% 98.98% 99.75% 83.67% 87.76% 73.47% 77.55% 80.39% 0.93% 19.51% 48.1%
chb23 99.67% 63.72% 97.85% 98.54% 99.94% 63.72% 98.11% 98.85% 34.0% 64.0% 37.0% 26.0% 45.95% 1.45% 12.61% 13.0%
chb24 99.31% 56.61% 98.05% 98.12% 99.51% 56.4% 98.19% 98.25% 67.77% 88.43% 76.86% 76.86% 55.41% 2.51% 33.27% 34.0%

Average 99.2% 66.43% 98.19% 99.06% 99.46% 66.38% 98.42% 99.33% 41.86% 73.68% 44.05% 33.24% 34.09% 1.91% 19.05% 24.19%

4) Implementation Details: In our FL framework, each
client represents an individual patient with access solely to
their own data. Consequently, as described in IV-A2, given
the 24 cases in the dataset and our use of the LOOCV
procedure, 23 clients participate in each experiment. The
training process is governed by a predefined stopping criterion
of 100 iterations, meaning that the model undergoes 100
updates per experiment. We implemented our FL framework
using the PyTorch library. The cross-entropy loss function
was employed for training, with the Adam optimizer applied
for parameter updates using its default settings. For frequency
band analysis metrics, we utilized scipy.signal.welch
to compute the power spectral density. Numerical integration
was performed using the trapezoidal rule implemented through
numpy.trapz.

5) Evaluation Metrics: For the evaluation, we adopt both
sample-based and event-based approaches. Sample-based eval-
uation has traditionally been the primary method for assessing
ML algorithms and seizure detection models. While it provides
detailed insights into performance at the level of individual
data samples, it does not address clinically relevant questions.
Event-based evaluation has emerged as a complementary ap-
proach, focusing on clinical considerations such as accurately
counting seizures and minimizing false alarms. This method
is more in line with the real world requirements of seizure
detection in clinical and home monitoring systems [48].

Sample-Based Evaluation: Sample-based scoring calculates
performance metrics on a sample-by-sample basis. It evaluates
the performance of seizure detection models by comparing
the predicted label for each test set window against the
corresponding ground truth label. For sample-based evaluation,
we report metrics including accuracy, specificity (true negative
rate), sensitivity (recall or true positive rate), F1 score, and

precision.
Event-Based Evaluation: Event-based scoring evaluates

seizures as events, relying on the overlap between reference
and hypothesis annotations. Any overlap is considered a cor-
rect detection (TP), while hypothesis events that do not overlap
with a reference event are counted as false positives (FP). We
apply a moving average filter to smooth the predictions before
performing event-based evaluations. Consistent with [42], we
use a filter size of 11 (corresponding to 20 seconds).3 For
the event-based evaluation, we report sensitivity, F1 score,
precision, and FP/24 (false positive per day rate).4

B. Experimental Results

In this section, we present our experimental results based
on the setup described in Section IV-A.

1) Performance Analysis: For the evaluation, we consider
two main baselines and two variants of our proposed method,
discussed below.

(1) Clean Dataset: In this baseline, we utilize the dataset
described in Section IV-A2, but with clean labels for
training. For this experiment, D = 10 min. The sample-
based and event-based results are presented in Table I
and Table II (B1 columns), respectively. This baseline is
implemented based on FCN [61]. The authors achieved an
F1 score of 46.6% on average, in a centralized scenario
using all channels. In this work, we consider only two
channels, aligning with the constraints of a wearable
systems, in FL setting, which leads to an average F1 score
of 34.09%.

3https://gitlab.epfl.ch/ashahbaz/personalized-online-seizure-detection
4For event-based scoring, we utilized the framework available at https://

github.com/esl-epfl/timescoring.

https://gitlab.epfl.ch/ashahbaz/personalized-online-seizure-detection
https://github.com/esl-epfl/timescoring
https://github.com/esl-epfl/timescoring
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Fig. 2: The Effect of Adjusting the Weight Assigned to Negative Samples in the Cross-Entropy Loss

TABLE II: Averaged Results for Event-Based Evaluation
(LOOCV): B1:Clean Data, B2:Noisy Data, M1:Noisy Data
(our method: flip labels), M2:Noisy Data (our method: remove
samples/weighted loss)

Metric B1 B2 M1 M2

Sensitivity 50.1% 91.8% 51.6% 42.93%
Precision 46.57% 2.82% 36.37% 42.52%
F1 score 43.17% 5.36% 37.26% 36.56%
FP/24h 2.53 175.69 6.63 2.69

(2) Noisy Dataset: In this baseline, we utilize the dataset
described in Section IV-A2, which includes noisy positive
labels for training. For this experiment, D = 10 min.
The sample-based and event-based results are presented
in Table I and Table II (B2 columns), respectively.

(3) Our Method (flip labels): In this experiment, as outlined
in III-D, we compute Mi

fb for all windows i within D
(considering only samples annotated as positive by the
patient). If Mi

fb > τ , where τ = µ′ + σ′, the sample
is retained with its original label; otherwise, its label is
flipped from 1 to 0. For this experiment, D = 10 min and
fb corresponds to the delta band. Using our band analysis
approach, 88.9% of noisy samples and 58.3% of clean
positive samples were correctly detected. The sample-
based and event-based results are presented in Table I
and Table II (M1 columns), respectively.

(4) Our Method (remove samples): In this experiment, as
described in III-D, we compute Mi

fb for all windows i
within D (considering only samples annotated as positive
by the patient). If Mi

fb > τ , where τ = µ′ + σ′, the
sample is retained in the training set; otherwise, it is
removed or ignored. For this experiment, D = 10 min
and fb corresponds to the delta band. The sample-based
and event-based results are presented in Table I and Table
II (M2 columns), respectively.

In the sample-based evaluation, the results demonstrate

that our proposed method (trained on noisy dataset), which
involves removing samples during training (M2 column),
achieves up to 32.63% higher accuracy, 32.95% higher speci-
ficity and 22.28% higher F1 score compared to the model
trained on noisy dataset (B2 column). While the sensitivity is
40.44% lower, this is an expected trade-off between specificity
and sensitivity. This trade-off is further influenced by the noisy
dataset’s composition, where 50% of the samples are labeled
positive, the majority of which are noise. This skews the
model, biasing it toward making more positive predictions.
This is also true when comparing the model to the model
trained on the clean dataset. When compared to the clean
dataset (B1 column), our method exhibits only 0.14% lower
accuracy, 0.13% lower specificity, 8.62% lower sensitivity, and
9.9% lower F1 score. These differences can be attributed to
the significant noise present in the dataset, which impacts the
overall performance.

In the event-based evaluation, our proposed method, which
involves removing samples during training (M2 column),
achieves up to 39.7% higher precision, 31.2% higher F1 score,
and 173.0 fewer FP/24h compared to the model trained on
the noisy dataset (B2 column). Comparable to the sample-
based evaluation, the sensitivity is 48.87% lower. As explained
earlier, this is due to the high proportion of noisy samples
with positive labels, which biases the model toward making
more positive predictions. Compared to the clean dataset (B1
column), our method shows only a 7.17% decrease in sensi-
tivity, 4.05% lower precision, and 6.61% lower F1 score, with
a marginal increase of 0.16 in FP/24h. These differences, as
discussed previously, can be attributed to the substantial noise
present in the dataset, which affects the overall performance.

ML performance in CHB-MIT: When performing LOOCV
on the CHB-MIT dataset, similar to the evaluation setting in
[61], from which we adopt the neural network architecture,
we observed variability in model performance across cases
(e.g., chb06, chb14). This observation aligns with prior re-
search, which reports that seizure detection accuracy can vary
significantly between patients due to multiple factors. These



discrepancies can be attributed to the limited seizure data per
patient, variations in seizure morphologies, or seizure foci not
properly captured by the selected EEG channels [62], [63]. The
results reported in [61], also demonstrate such inter-patient
variability and low performance for certain cases, even when
a larger number of EEG channels are considered in the deep
learning model.

2) Ablation Study: In this section, we analyze the effect of
adjusting the weights assigned to positive and negative samples
in the cross-entropy loss for our method, which involves
sample removal. Since we are training on a subset of the
dataset, as described in Section IV-A2, and removing certain
samples, this approach might reduce the specificity. In the
context of seizure detection, maintaining high specificity is
crucial, as lower specificity translates to increased false alarms,
which we aim to minimize. To address this, we increase the
weight of negative samples during training to evaluate the
impact of this adjustment on model performance and identify
the most appropriate weight configuration for our application.

Figure 2 presents the results of adjusting the weights as-
signed to negative and positive samples in the cross-entropy
loss. The evaluation starts with equal weights and progresses
to assigning the negative samples a weight five times greater
than that of the positive samples. Results are reported for
both sample-based and event-based evaluations. The analysis
shows that increasing the weight of negative samples improves
metrics such as specificity and FA/24h, which correspond to a
reduction in false alarms. However, this improvement comes
at the cost of reduced sensitivity. As there is an inherent
trade-off between sensitivity and specificity, selecting a weight
configuration that meets the desired requirements is essential.
In this study, we select w = 4 as it achieves a low FA/24h
while remaining comparable to the model trained on clean
data, as discussed in Section IV-B.

In this section, we also analyze the variation in D from 10
minutes to 40 minutes. Figure 3 presents the results based
on the F1 score (event based) for the discussed baselines
B1 and B2, as well as our proposed methods M1 and M2
(with different values of D). The results indicate that, as D
increases, our approach continues to significantly outperform
B2. However, the problem becomes more challenging with
larger D, leading to a decline in the predictive performance of
M1 and M2. Additionally, the decrease in B1’s performance
from D = 20 minutes to D = 40 minutes could be attributed
to changes in our dataset.

V. CONCLUSION

In this paper, we have addressed a critical challenge in
FL for wearable seizure detection systems using patient-
annotated data. We highlighted the significant noise present
in patient-annotated data and proposed a method to formulate
and address this issue effectively. Our experimental results,
based on the publicly available CHB-MIT benchmark dataset,
demonstrated that for sample-based evaluation, our proposed
method achieves up to 32.63% higher accuracy, 32.95% higher
specificity, and 22.28% higher F1 score compared to the
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Fig. 3: Variation in D from 10 to 40 minutes

model trained on the noisy dataset. For event-based evaluation,
our proposed method achieves up to 39.7% higher precision,
31.2% higher F1 score, and 173.0 fewer FP/24h compared to
the model trained on the noisy dataset.

In this study, our focus was on EEG signals. The primary
reason is that EEG is one of the most widely used biosignals
for seizure detection, and recent advancements have made
ambulatory EEG monitoring feasible using state-of-the-art
wearable devices. Our approach to addressing label noise is
inspired by neuroscience research, which shows that various
physiological states, such as sleep, wakefulness, and patho-
physiological processes like seizures, show distinct patterns
in EEG signals. Although the current implementation relies
on EEG-specific spectral features, our framework may be
extended to support building models based on other biosignals.

This work advances the state-of-the-art in mitigating the
noisy label problem for seizure detection in wearable devices
within an FL context. Moreover, it provides a practical solution
for managing label noise in real-world scenarios and can
be easily integrated into future FL frameworks for seizure
detection.
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