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ABSTRACT

Today, in many real-world applications of machine learning
algorithms, the data is stored on multiple sources instead of at
one central repository. In many such scenarios, due to privacy
concerns and legal obligations, e.g., for medical data, and com-
munication/computation overhead, for instance for large scale
data, the raw data cannot be transferred to a center for analy-
sis. Therefore, new machine learning approaches are proposed
for learning from the distributed data in such settings. In this
paper, we extend the distributed Extremely Randomized Trees
(ERT) approach w.r.t. privacy and scalability. First, we extend
distributed ERT to be resilient w.r.t. the number of colluding
parties in a scalable fashion. Then, we extend the distributed
ERT to improve its scalability without any major loss in clas-
sification performance. We refer to our proposed approach as
k-PPD-ERT or Privacy-Preserving Distributed Extremely Ran-
domized Trees with k colluding parties.

Index Terms— Distributed Learning, Privacy-Preserving
Data Mining, Extremely Randomized Trees, Secure Multiparty
Computation, Structured Data

1. INTRODUCTION

A basic assumption in traditional data mining algorithms is
that all training data are stored in one data center where min-
ing algorithms run. However, this assumption is not practi-
cal in many of today’s real-world applications. Today, data
is generated and stored on various machines, often located in
distributed places. For example, health data is generated and
stored at various hospitals, health service providers, and pa-
tients’ personal devices. Such raw data cannot be shared with
a data mining center due to privacy and legal concerns [1, 2].
At the same time, if each party performs mining on its limited
data, the performance of the resulting model will largely be
subordinate to the performance of a model that can be learned
from all the data. Therefore, new mining approaches are re-
quired to learn from data distributed across multiple sources
while maintaining privacy.

The learning from distributed data in privacy-preserving
fashion have been extensively studied over the past decades.
The first category of solutions is based on sharing raw data with
a trusted third party, which might not be practical in certain sce-
narios since individuals’ privacy cannot be protected from that
party [3]. On the other hand, several studies have focused on
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perturbation-based solutions, e.g., [4–8], to address this issue
by adding noise to the data before sharing it. While perturb-
ing the data improves privacy, it also reduces the data utility.
Moreover, noise removal techniques cast doubt on the privacy
of such approaches [9, 10]. In addition, several anonymiza-
tion methods, e.g., [11, 12], have been proposed to alter data
values, by adopting techniques such as generalization (in k-
anonymization [13]) or encryption of data values (in [14]),
to avoid reidentification of data subjects [15], e.g., through
linking attack [13]. However, in such perturbation-based and
anonymization techniques, there is a trade-off between data
utility and privacy, which make them impractical in certain
scenarios.

Existing literature on data mining over distributed plat-
forms incorporate approaches based on cryptographic and
secure multiparty computing techniques [16–20]. However,
such methods significantly increase communication and com-
puting overhead, making them inefficient and impractical for
many real-world scenarios, where we have large-scale data
or limited communication and computing features, e.g., in
mobile phones or resource-limited wearable devices [21–24].
Several state-of-the-art solutions, such as [3, 25, 26], aim to
address learning in distributed settings in terms of reducing
communication and computational overheads. This is because
the complexity and scalability of the approach, along with the
quality of data mining results and privacy, are among the three
primary metrics for evaluating privacy-preserving data mining
algorithms [27].

In this paper, we focus on the Extremely Randomized Trees
(ERT) algorithm [28], which has a competitive performance
for structured data, where we have independently meaningful
attributes, compared to the existing state-of-the-art techniques,
e.g., standard deep neural networks [29]. We consider the ERT
algorithm in the distributed setting to reduce the amount of raw
data leaving a party and privacy concerns [30]. We extend this
distributed ERT framework in order to improve its scalability
and privacy. We adopt an efficient Secure Multiparty Compu-
tation (SMC) technique for secure aggregation of partial results
in our approach, which is resilient to multiple colluding parties,
similar to Shamir’s secret sharing technique [31]. We further
propose a practical implementation of our proposed framework
to reduce its overhead and improve its scalability. Moreover,
we extend our proposed framework for efficient handling of
large scale data and where only a subset of the parties partici-
pate in the process of learning. Our proposed framework offers
the opportunity to make a trade-off among performance, pri-
vacy, and overhead.



2. BACKGROUND

Extremely Randomized Trees (ERT) is a tree-based ensemble
supervised learning method [28]. This approach is robust to
overfitting since it follows the logic of bagging, i.e., it generates
an ensemble of different weak classifiers and finally classifies
based on a majority vote among these classifiers. The random-
ness parameters for generating distinctive weak classifiers are
data attributes and splitting points for generating candidate de-
cision nodes.

This paper considers the distributed ERT framework, which
is adapted for learning classifier models from structured data,
with categorical/numerical attributes and categorical labels,
distributed over an arbitrary number of sources. In such a set-
ting, the training data is horizontally partitioned and distributed
over multiple sources, i.e., different records are stored on dif-
ferent data holder parties. The raw data cannot be shared with
a central server for mining due to privacy and legal concerns.
Therefore, the distributed ERT learns from the data without di-
rect access to it and merely by partial and limited information
from parties that hold the training data.

Distributed ERT iteratively learns an ensemble of decision
trees. Learning a decision tree requires selecting a decision
node at each step. The selection of decision nodes is per-
formed based on the information gain. Information gain is a
measure/score that indicates how well a decision node, com-
pared to others, classifies the data samples to have more pure
sets of samples at every branch of the decision node consid-
ering samples’ labels. To calculate the information gain, the
classification results of candidate decision nodes are required
(from all data holder parties). Therefore, in distributed ERT,
every data holder party classifies its records with the randomly
generated decision nodes and obtains partial results (two vec-
tors representing the combination/mixture of record labels fall
into True and False branches). The aggregation of such partial
results from all data holder parties enables the calculation of
scores/information gains.

The direct sharing of such partial results to other parties
puts the privacy of data subjects at risk. For instance, assum-
ing the party holds only one record, if the candidate decision
node classifies the data based on a sensitive attribute, e.g., suf-
fering from a mental disorder, then the partial result indicates if
the data subject falls under a certain category. For calculating
the score, only the aggregation of partial results is required. In
distributed ERT, each party aggregates its partial results to the
previous party’s received result and sends it to the next party.
Although this technique is more efficient compared to the em-
ployed techniques in similar studies [3], e.g., Shamir’s secret
sharing technique [31], the number of colluding parties to re-
veal a secret value, in the worst case, is one.

In this study, we extend the distributed ERT framework and
the secure aggregation protocol to be resilient to k colluding
parties, where k is determined by the user. We further propose
an efficient implementation for our framework, which is scal-
able and robust for large scale data w.r.t. the participation of a
subset of data holder parties.

𝑷𝟏 𝑷𝟐 𝑷𝒏

𝑴𝒆𝒅𝒊𝒂𝒕𝒐𝒓

Initialization

Fig. 1: Overall scenario for our privacy-preserving learning

3. APPROACH

In this section, we explain the proposed k-PPD-ERT algorithm.
Section 3.1 describes the adopted secure aggregation technique
for k-PPD-ERT. In Section 3.2, we explain how we can im-
prove the scalability of the approach to learn from large scale
data.

3.1. Privacy in the Presence of k Colluding Parties

Figure 1 illustrates the overall scenario for the proposed
privacy-preserving learning framework. In the initialization
phase of the k-PPD-ERT algorithm, each data holder party
shares two seeds for the random function to other data holder
parties (and receives two in return from each data holder party).
The first seed (Seed for Selection of Parties, SSP ) is unique
for each sender but common for receivers, but the second seed
(Seed for Secure Aggregation, SSA) is unique for each sender
and receiver couple.

We suppose that the number of data holder parties is n.
Therefore, after this initialization procedure, party m, Pm

(where 1 ≤ m ≤ n), receives two sets of n − 1 seeds
from other data holder parties ({SSPP1

all, . . . ,SSP
Pn

all} and
{SSAP1

Pm
, . . . ,SSAPn

Pm
}) and holds the seeds which were sent

to other parties (SSPPm

all and {SSAPm

P1
, . . . ,SSAPm

Pn
}). More-

over, the secret value of party m is denoted by secret valPm .
The responsibilities of party m in one round of secure ag-

gregation is explained in the following steps:

(a) Identifying the k parties that participate in the secure
aggregation for Pm:
Party Pm uses SSPPm

all , in its random function, to iden-
tify which parties participate in secure aggregation for
Pm, i.e., by randomly generating the party indices. Then,
Pm generates random masks based on the sent SSA
seeds ({SSAPm

P1
, . . . ,SSAPm

Pn
}) of selected parties and

aggregates them. It stores the result of aggregation in
rnd sumPm

self .

(b) Identifying the parties for which Pm participate in
the secure aggregation:
Party Pm uses its received SSP seeds ({SSPP1

all, . . . ,

SSPPn

all}) to identify the parties with whose received
SSA seeds, Pm must generate random masks. Then,



Pm generates random masks based on the received SSA
seeds ({SSAP1

Pm
, . . . ,SSAPn

Pm
}) of selected parties and

aggregates them. It stores the result of aggregation in
rnd sumPm

others.

(c) Aggregation and transfer of partial results (P.R.) to
the mediator:
Party Pm calculates P.R.Pm as follows: P.R.Pm =
secret valPm − rnd sumPm

self + rnd sumPm

others. Then,
Pm sends P.R.Pm to the mediator.

The mediators calculates the desired result (aggregation of
secret values) by aggregating all received partial results.

Privacy: We now show that the secret values of par-
ties are kept private in our proposed protocol. The par-
tial result P.R.Pm , which is shared with the mediator con-
sists of three components: secret valPm , rnd sumPm

self ,
and rnd sumPm

others. The two components, rnd sumPm

self

and rnd sumPm

others, mask the secret value. The value of
rnd sumPm

self can only be identified by collusion of k parties
holding the random seeds for generating the random masks,
which are the components of rnd sumPm

self . At the same
time, rnd sumPm

others can only be identified by collusion of k
(potentially) other parties which generate the components of
rnd sumPm

others. In the worst case, the k parties involved in
rnd sumPm

self and rnd sumPm

others may be the same; hence, the
minimum number of colluding data holder parties equals to
k. Moreover, since the mediator receives the victim’s partial
result, the collusion of other parties without the mediator’s
participation is ineffective. Therefore, for identifying a secret
value, the collusion of k data holder parties and the mediator is
necessary.

Correctness: We also show that the final value of aggre-
gation of partial results is equal to the aggregation of secret
values. Without loss of generality we consider k = n − 1.
The aggregation of all partial results sent to the mediator is as
follows:
n∑

j=1

P.R.Pj = secret valP1 − rnd sumP1
self + rnd sumP1

others

... (1)

+ secret valPn − rnd sumPn
self + rnd sumPn

others

=
n∑

j=1

secret valPj−
n∑

j=1

rnd sum
Pj

self+
n∑

j=1

rnd sum
Pj

others.

Based on (a), rnd sumPm

self =
∑n

i=1 rnd
Pm

Pi
− rndPm

Pm
,

where rndPm

Pi
is the shared random mask between Pm and

Pi. On the other hand, based on (b), rnd sumPm

others =∑n
i=1 rnd

Pi

Pm
− rndPm

Pm
. Substituting these two equations

in equation 1, we obtain:
n∑

j=1

P.R.Pj=

n∑
j=1

secret valPj−
n∑

j=1

rnd sum
Pj

self+

n∑
j=1

rnd sum
Pj

others

=
n∑

j=1

secret valPj−
n∑

j=1

(
n∑

i=1

rnd
Pj

Pi
− rnd

Pj

Pj
) (2)

+
n∑

j=1

(
n∑

i=1

rnd
Pi
Pj

− rnd
Pj

Pj
)=

n∑
j=1

secret valPj .

The above equations show that the aggregation of partial
results from data holder parties is equal to the aggregation of
data holder parties’ secret values.

3.2. Efficient Handling of Large Scale Data

In distributed ERT, all the data holder parties participate in (col-
laborate on) the process of selecting the best decision node/leaf
at every round of the algorithm. However, in order to effi-
ciently handle large scale data sets and reduce the communi-
cation/computation overheads, in k-PPD-ERT, only a subset of
data holder parties participate in the process of learning at ev-
ery round. The probability of participation of each party in the
learning process at each round is a parameter that is set by the
user.

The algorithm uses the aggregation of data holder par-
ties’ partial results to calculate the candidate decision nodes’
score/information gain. In certain rounds, the result of this
aggregation is used to select a leaf for the tree. In k-PPD-ERT,
when not all the parties participate in the aggregation process,
the result of aggregation changes. However, in Section 4,
we experimentally show that this technique does not lead to
a major loss in the classification performance of our learned
models.

Random participation of data holders in the described pro-
cess changes the result of aggregation and, consequently, the
learning. However, the learning results are not noticeably af-
fected (shown experimentally in Section 4). The randomness in
the participation of data holder parties, similar to the random-
ness in the generation of candidate decision nodes in the dis-
tributed ERT, is another source of randomness in our approach.
Introducing another source of randomness in ensemble learn-
ing methods while keeping the algorithm’s ability to generate
weak classifiers is in accordance with the logic of bagging.

To determine which parties participate at each round, the
mediator shares a common random seed (Seed for Participat-
ing Parties, SPP ) with all data holder parties. Therefore, by
using this seed and the constant probability of participation,
every party determines the participating parties in that round
of secure aggregation (for selecting the best candidate decision
node/leaf). Then, each participating party picks its k peer par-
ties for secure aggregation based on the available parties in that
round, determined by SPP .

4. EVALUATION AND DISCUSSION

In this section, first, we evaluate the adopted secure aggrega-
tion technique. We compare our technique with distributed
ERT and Shamir’s techniques. These secure aggregation tech-
niques are evaluated based on the communication cost in one
round of secure aggregation and the minimum number of par-
ties that need to participate in collusion in order to identify a
secret value. Then, we examine the limited participation of
data holder parties in the process of selecting the best candi-
date decision node/leaf. We evaluate the classification perfor-
mance and the scalability of k-PPD-ERT offered by adopting
this approach.
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(b) Accuracy w.r.t. proportion of
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(c) Elapsed learning time w.r.t. pro-
portion of participating parties
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(d) Secure aggregations w.r.t. pro-
portion of participating parties

Fig. 2: Analysis of the classification performance, the elapsed learning time, and number of secure aggregations for learning based on different
proportions of participating parties in the learning process

Table 1 exhibits and compares communication costs (in one
round of secure aggregation) and the minimum number of par-
ties necessary to collude for identifying a secret value. Accord-
ing to the table, the communication complexity of k-PPD-ERT
has the lowest order, while offering the highest minimum num-
ber of colluding parties for identifying a secret value. The com-
munication complexity of the k-PPD-ERT technique is O(n),
similar to the distributed ERT, while this equals to O(n2) for
Shamir’s technique. On the other hand, the minimum number
of colluding parties for k-PPD-ERT is k data holder parties plus
the mediator, which is the highest. Therefore, the k-PPD-ERT’s
secure aggregation technique offers privacy with multiple col-
luding parties, while preserving the algorithm’s scalability.

Table 1: Scalability and privacy comparison against existing
techniques

Approach Party Communication (N is the number of parties) Min Number of
Send Receive Total (All N parties) Colluding Parties

Distributed ERT All 1 1 2N 1

k-PPD-ERT Data Holders 1 0
2(N − 1) k + 1 (k < N )Mediator 0 N − 1

Shamir [31]
k-1 Parties N N − 1

2(N2 −N + k − 1) k (k < N )One Party N − 1 N + k − 2
The Rest N − 1 N − 1

In k-PPD-ERT’s secure aggregation technique, the total
number of send and receive messages in k-PPD-ERT is in-
dependent of k, so we can always set k to n − 1. This does
not introduce any cost, concerning the communication, in our
algorithm.

We now evaluate data holder parties’ limited participation
at every round of a selecting decision node/leaf. To investi-
gate this feature, we use Multiple Features [32] and Waveform
Database Generator (Version 1) [33] datasets, and allocate 2/3
of each dataset for learning and the rest for testing. We dis-
tribute the training data evenly among ten parties. The mediator
learns an ensemble of 25 decision trees by k-PPD-ERT in ev-
ery experiment. We repeat the learning process for situations in
which the proportion of participating parties at every round of
selecting the best decision node/leaf is 0.2, 0.3, 0.4, ..., 1. Fig-
ure 2 visualizes the results of these experiments. In every ex-
periment, we record: the classification performance, shown in
Figure 2a and 2b, the elapsed time for learning process, in Fig-
ure 2c, and the number of required secure aggregations for the

learning process, in Figure 2d. The Y-axis in Figure 2c and 2d
has a logarithmic scale (because of the differences in the mag-
nitude of results for Multiple Features and Waveform datasets).

On the one hand, the results in Figure 2a and 2b show that
random participation of only 40% of data holder parties at each
round leads to high classification performance. The difference
in classification performance for 40% of participation and more
(even when all parties participate, similar to distributed ERT) is
negligible. Furthermore, in some experiments with data hold-
ers’ limited participation, we obtain models with higher classi-
fication performance. The logic behind bagging and the intro-
duced source of randomness in k-PPD-ERT may explain these
improvements.

On the other hand, the results in Figure 2c and 2d show im-
provements concerning the scalability when fewer data holders
participate in learning at each round. Figure 2c shows the de-
crease of elapsed time for learning a model by reducing the
number of participating parties. In addition, Figure 2d exhibits
the continuous growth of secure aggregation rounds by increas-
ing the number of parties that participate in different rounds of
selecting a decision node/leaf for our decision trees.

The results in Figure 2 show that our algorithm’s scalabil-
ity improves by limiting the number of data holder parties that
participate in every round of selection of a decision node/leaf.
However, the learning performance and its resulting models
will not have any noticeable loss.

5. CONCLUSION

In this paper, we consider the distributed ERT framework and
extend it by adopting a secure aggregation technique that is re-
silient to the collusion of up to k data holder parties and the me-
diator. We further proposed a scalable implementation for our
framework, which is efficient w.r.t. the communication over-
head. Moreover, we investigated the efficient handling of large
scale data with the limited participation of data holder parties
at every round of the learning process. Our evaluation demon-
strates the privacy preservation and resilience of the proposed
framework w.r.t. the number of colluding parties and its scala-
bility and robustness for large scale data w.r.t. the participation
of a subset of data holder parties.
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