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Abstract— Patients’ health data are captured by local hospital
facilities, which has the potential for data analysis. However,
due to privacy and legal concerns, local hospital facilities are
unable to share the data with others which makes it difficult to
apply data analysis and machine learning techniques over the
health data. Analysis of such data across hospitals can provide
valuable information to health professionals. Anonymization
methods offer privacy-preserving solutions for sharing data for
analysis purposes. In this paper, we propose a novel method for
anonymizing and sharing data that addresses the record-linkage
and attribute-linkage attack models. Our proposed method
achieves anonymity by formulating and solving this problem
as a constrained optimization problem which is based on the
k-anonymity, /-diversity, and #-closeness privacy models. The
proposed method has been evaluated with respect to the utility
and privacy of data after anonymization in comparison to the
original data.

I. INTRODUCTION

Patients’ data is private and may contain sensitive infor-
mation, e.g., information about a health condition. Such data
may not be shared with other parties in their raw format
due to privacy and legal concerns [1], [2]. However, such
data may be required for analysis purposes to provide value
to medical experts and utilized for analysis by adopting
privacy-preserving data mining or privacy-preserving data
sharing approaches depending on the particular application
and scenario.

Privacy-preserving data mining techniques perform the
analysis without direct access to the data. Several approaches
adopt homomorphic encryption techniques for learning tasks
[3], [4]. However, such methods suffer from communication
and computation overhead and are not always practical
[5]. Several state-of-the-art techniques modify and adapt
algorithms for learning from distributed data without sharing
data and sacrificing privacy [6], [7], [8], [9], [10]. Nev-
ertheless, each algorithm should be extended to support
privacy-preserving distributed learning. Moreover, learning
a classification model from data is not the only objective in
particular scenarios, and a version of data may be required
to be published, e.g., for medical expert inspection and
visualization.

Privacy-preserving data sharing techniques share an al-
tered version of data for analysis. Several studies add noise to
data and perturb it before sharing [11], [12], [13]. However,
the utility of data will be negatively affected by the perturba-
tion of data. On the other hand, privacy will not be preserved
if the noise added is not sufficient. Moreover, noise removal
approaches pose a threat to the privacy of such methods [14],

IWestern Norway University of Applied Sciences, Bergen, Norway
firstname.lastname@hvl.no

2University of Bergen, Bergen, Norway

3University of Oslo, Oslo, Norway

[15]. Several studies adopt neural networks and generative
adversarial networks (GAN) [16] for altering the data before
sharing [2], [17], [18], [19]. Such approaches mainly focus
on particular time-series data and data in wearable devices’
applications [20], [21], [22], [23].

Anonymization methods also alter the data to avoid iden-
tifying data subjects in such datasets [24]. Previous studies
proposed several privacy models for anonymization, e.g., k-
anonymization [25], [-diversity [26], ¢-closeness [27], LKC-
privacy [28]. The data holder selects a model based on the
scenario, utility, and privacy requirements. Several methods
have been proposed to comply with such privacy models and
avoid the associated attacks, i.e., record-linkage and attribute-
linkage attacks, e.g., using genetic algorithms to kd-trees
algorithms for generalization and achieving anonymity [29],
[301, [311, [32], [33].

In particular, [34] proposes the utilization of Mixed-
Integer Programming for achieving k-anonymity. Similarly,
[35] formulates the anonymization problem in a Mixed-
Integer Linear Programming (MILP) framework and achieves
k-anonymity based on optimization. This approach uses gen-
eralization for anonymization and optimizes the lower and
upper bound for each value of quasi-identifiers, which are the
attributes that the adversary may have information about for
identification. However, these anonymization methods [34],
[35] merely consider k-anonymity and does not prevent the
attribute-linkage attack, which is the issue addressed by the /-
diversity and t-closeness privacy models. Therefore, the joint
consideration of the k-anonymity, /-diversity, and z-closeness
privacy models in such frameworks have not been considered
to date.

In this paper, we propose a method for anonymizing
data that ensures each record is indistinguishable from,
at least, k-/ other records in the shared data while tak-
ing the diversity and frequency of values in the sensitive
attribute into consideration. In other words, we propose
a method for anonymization of data considering the k-
anonymity, [-diversity, and #-closeness privacy models in a
unified framework. We formulate the anonymization problem
in a constrained optimization framework as a clustering
problem, where the diversity and frequency of sensitive
values are captured and enforced by constraints. We refer
to our proposed method as diversity-aware anonymization,
where diversity captures both the diversity concept in the /-
diversity privacy model and the frequency and distribution
of sensitive values in the #-closeness privacy model. The
experimental results show the preservation of utility of data
for classification tasks and the privacy properties noted in
the discussed models.

The rest of this paper is organized as follows: Section



IT covers the background with respect to k-anonymity, I-
diversity, r-closeness, and their corresponding attack models.
We formulate our proposed anonymization method in the
constrained optimization framework in Section III. Section
IV provides the experimental results for evaluation of our
method. Section V concludes our paper.

II. BACKGROUND

In this section, we briefly review the record-linkage and
attribute-linkage attack models. In addition, we discuss three
popular privacy models addressing such attacks, i.e., k-
anonymity, /-diversity, and #-closeness.

In the record-linkage and attribute-linkage attack models,
we suppose that a version of data after removing the identifier
attributes of patients, e.g., name and address, is shared with
a data recipient. At the same time, the adversary has access
to the data shared with the data recipient. This data contains
several attributes through which a patient (record owner) can
be identified, i.e., quasi-identifiers, and it is assumed that the
adversary has the exact value of these attributes for the victim
patient. Finally, there is a sensitive attribute in the data, e.g.,
family history for a health pathology, that the adversary is
interested in knowing about.

To explain this attack models, we use Tables Ia and Ib as
an example. The 2nd-4th columns are considered as quasi-
identifiers and refer to age, the number of children, and the
smoking state of the patient (Yes/No). The 5th column is
a sensitive attribute capturing the state of the HIV disease
for the patient (Positive/Negative). Table Ia represents shared
data after removing the identifier features. Suppose that Table
Ia is shared with the data recipient. If the adversary knows
that the victim is 37 years old, has two children, and smokes,
he/she can easily match his/her information to one of the
records (record one in Table Ia) and identify that the victim
is diagnosed with HIV. The record-linkage attack occurs by
matching the adversary’s information (quasi-identifiers) with
published data for identifying the patient’s (record owner)
sensitive information [36].

The k-anonymity privacy model was proposed to address
the record-linkage attack model. A dataset is k-anonymous
when the values of quasi-identifiers for each record are the
same as the values for at least k-7 other records in the data.
In this way, the adversary can only match his/her information
with at least k records. Table Ib shows a 3-anonymous
version of the same data in Table Ia. For instance, in our
example in Table Ib, if the adversary knows that the victim
is 37, has two children, and smokes, he/she can merely match
his/her information with a qid group containing the records
of three patients, records /-3.

While the k-anonymity model guarantees that a patient is
only matched with a qid group, however, this model does not
guarantee the protection of patients’ privacy against attribute-
linkage attacks. That is, k-anonymity does not consider
the diversity of values for the sensitive attribute in each
qid group. In this example, in the first qid group, all the
values for the sensitive attribute are Positive. Therefore, in
the first qid group, the adversary can infer that the victim

patient is diagnosed with HIV by matching quasi-identifiers’
information. The attribute-linkage attack model occurs in
situations where the diversity of values for the sensitive
attribute is low. As a result, the adversary may infer the
sensitive attribute with high confidence.

To address the attribute-linkage attack, the [-diversity
model proposes that every qid group should have a least
[ distinct values for the sensitive attribute. For instance, in
Table Ib, if the adversary matches his/her information with
the third qid group, he/she can not identify that the patient
was diagnosed with HIV for sure because both Negative
and Positive values are in that qid group. However, this
does not consider the confidence of the adversary’s inference
properly. For example, if we have both Negative and Positive
values in all gid groups, we have 2-divers data, but if the
proportion of Positive values in one qid group is high, the
adversary can infer that the patient is diagnosed with HIV
with high confidence. The entropy [-diversity and recursive
(c,l)-diversity are proposed to address such issues [26].

Entropy [/-diversity is one of the existing privacy models to
address the distribution of values in the sensitive attribute.
A data table meeting the following condition for each qid
group is entropy /-diverse:

— Y P(qid, 5)log(P(gid, s)) > log(1), ()
ses
where S is the set of values for sensitive attribute, and P(qid,
s) is the probability/proportion of value s for the sensitive
attribute in the qid group.

The entropy [-diversity still has several limitations. For
instance, if the entropy of values for the sensitive attribute in
qid groups is high, the [ will be high. The entropy is highest
when the distribution of values is a uniform distribution.
Nevertheless, we prefer the minimum probability for the
sensitive value (Positive in our example) in the qid group.
In our example, we favor as few Positives in the qid groups
as possible to lower the confidence of inferring HIV positive
for the victim patient. Still, entropy [/-diversity encourages an
equal number of Positives and Negatives in the qid groups.

Recursive (c,l)-diversity controls the frequency of values
for the sensitive attribute in the qid group. In this model,
c is a constant greater than zero, ¢ > 0. The values for
the sensitive attribute S are: sq, ss, ..., S;. The number of
occurrence for each value (for the sensitive attribute) in the
qid group are: ny,ng, ..., Ny,. The number of occurrence for
values sorted in a decreasing order are: r1,7g,...,7y. If a
data table meets 1 < ¢ .-, r; for each gid group, then the
data is recursive (c,I)-diverse.

The recursive (c,[)-diversity can relax the restrictiveness
compared to entropy [/-diversity. When we have a larger
¢, we can have a larger /. Therefore, we can relax the
restrictiveness by increasing c. This privacy model avoids
having a high frequency of highly repeated values (in the
dataset for sensitive value) in the qid group. It also forces
the less frequent values (in the dataset for sensitive value) to
be more frequent in the qid group. However, this may not
be desirable in certain scenarios. Many healthcare datasets
have sensitive attributes with highly imbalanced values. For



Index Quasi Identifier Sensitive
Age  Number of Children Smoke HIV
1 37 2 Yes Positive
2 36 0 Yes Positive
3 40 0 Yes Positive
4 35 3 Yes Negative
5 32 1 Yes Negative
6 34 1 Yes Negative
7 30 2 No Positive
8 34 2 No Negative
9 28 1 No Negative
10 31 1 No Negative

(a) Original data

Quasi Identifier Sensitive

Index —zog Number of Children  Smoke  HIV

1 [36-40]  [0-2] Yes Positive
2 [36-40] [0-2] Yes Positive
3 [36-40]  [0-2] Yes Positive
4 [32-35] [1-3] Yes Negative
5 [32-35] [1-3] Yes Negative
6 [32-35] [1-3] Yes Negative
7 [28-34] [1-2] No Positive
8 [28-34] [1-2] No Negative
9 [28-34] [1-2] No Negative
10 [28-34] [1-2] No Negative

(b) 3-anonymous data

TABLE I: Patient data tables in original and 3-anonymous formats

instance, in a table of data with 1000 records, we may have
merely 20 patients diagnosed with HIV. In our example,
by increasing the frequency of a sensitive value (with low
frequency in the dataset) in a qid group, the adversary can
more confidently infer that the patient is diagnosed with HIV.

The t-closeness privacy model proposes having a more
similar distribution of values in the sensitive attribute among
the qid groups and the whole dataset. In the #-closeness
model, the maximum distance between these two distribu-
tions may not be greater than the threshold ¢. For measuring
the distance between probabilistic distributions, one possible
metric is as follows:

i=1

where m is the number of values for the sensitive attribute.
P = {plaPQa s 7pm} and Q = {‘117%, cee an} are the
distributions of sensitive attribute in the entire dataset and
in a particular qid group, respectively. This distance metric
(variational distance) does not consider the semantic distance
between values. In scenarios where the semantic distance of
values is important, we may use other distance measures.
In this paper, we propose a method for anonymization of
data by jointly considering the k-anonymity, /-diversity, and
t-closeness privacy models in a unified framework.

III. APPROACH

In this section, we describe our method for addressing the
attack models discussed in Section II. In our method, we
consider the indistinguishability of samples in a qid group,
proposed in k-anonymity, diversity of values in sensitive
attributes in qid group, discussed in /-diversity, and frequency
of sensitive values in qid group in #-closeness.

In this method, we suppose that the values for the sensitive
attribute are either sensitive or not. In our example, the
Positive value shows that the patient (record owner) is di-
agnosed with HIV and is sensitive, while the value Negative
if known to the adversary causes no consequence to the
patient. Therefore, we consider a binary state for the values
in the sensitive attribute and distribute them in the qid groups
evenly.

Our method clusters the points in the space of quasi-
identifiers and shares the center of each cluster (qid group) as

the quasi-identifiers’ values for each qid group. Each cluster
contains k samples and is clustered based on the distance of
instances to the cluster center and the number of samples
with sensitive values in each cluster.

We adopt the constrained optimization framework to solve
the described clustering problem. The classical clustering
techniques do not fulfill our requirements. First, we need
to introduce the constraints to have k samples in each
cluster to ensure the indistinguishability property of the k-
anonymity model. Second, we need to introduce a constraint
for distributing instances with sensitive values evenly among
qid groups (clusters) to ensure diversity in the /-diversity and
t-closeness models.

The described anonymization problem is formulated in the
Mixed-Integer Linear Programming (MILP) framework, as
follows:

nc ns
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where ng is the number of clusters (qid groups), and ng
is the number of samples to be anonymized. X; is the
vector of quasi-identifiers’ values for sample j. B;; indicates
if sample j belongs to cluster (qid group) i and it is a
Boolean optimization variable. Center; is the i-th cluster
center calculated by k-means algorithm to be used as an
initial solution in our method to reduce the complexity of
our optimization problem.

The parameter k is the number of samples in each cluster
and is equal to =. C; is the center of cluster i which will
be optimized during solving this problem. The values of
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Fig. 1: Illustrative example for our anonymization method

vector C; will be shared with data recipients, i.e., instead
of raw quasi-identifiers’ values for i-th qid group. §; is a
Boolean parameter, S; € {0,1}, that identifies if sample j
has a sensitive value. Finally, « is a parameter that controls
the restrictiveness of the constraint, i.e., the higher the value
of «, the less the restrictions in solving this optimization
problem. This parameter is introduced to be able to tune the
restriction with respect to diversity in each qid group.

Let us discuss the proposed formulated optimization prob-
lem. The |B;; - (X; — Center;)| expression in Eq. (3) is
the Manhattan distance of sample j, X;, and cluster center
i, Center;, when the Boolean variable B;; is equal to one.
B;; will be equal to one, B;; = 1, if sample X; belongs to
cluster i, and it will be zero otherwise. The objective function
in Eq. 3 intends to optimize B;;s to minimize the distance
between samples in cluster i and Center;, for all clusters and
samples.

Egs. (4)-(7) are the constraints of our proposed optimiza-
tion problem:

o The first constraint, in Eq. (4), forces each sample to

belong to only one cluster. This is done by ensuring that
B;; is one exactly once for all i.

o The second constraint, in Eq. (5), forces the number of
samples in each cluster to be equal to k. The summation
of the number of samples must be equal to k for cluster
i. This condition can readily be relaxed to: at least k
samples in each cluster.

e The third constraint, in Eq. (6), finds the optimized
cluster centers, i.e., C;s. The optimized center for cluster
i is the average of all k samples that belong to cluster
L.

« Finally, the last constraint, in Eq. (7), forces the opti-
mization to distribute the samples with sensitive values
(S; = 1) into all clusters. The left-hand side of the
constraint is equal to the number of sensitive values in
cluster i. The right-hand side is the number of samples
with sensitive value divided evenly among the clusters
(multiplied by «, which is the parameter for relaxing
the hard constraint in our optimization problem).

After the optimization, we know which sample belongs to
which qid group or cluster, based on B matrix. We also know
the optimized cluster centers, identified based on the values
of C;s. Therefore, the values of sample quasi-identifiers will

be replaced by their respective cluster center values. In this
way, we obtain a solution that addresses record-linkage and
attribute-linkage attack models. We force the samples in
the anonymized data to be indistinguishable from k-/ other
samples while considering the diversity of values in the
sensitive attribute.

Fig. 1 presents an example in which the solution in Fig.
1b merely considers k-anonymity property, while Fig. Ic
considers the diversity of values in the sensitive attribute
addressed in [-diversity and t-closeness. The color of the
circles shows if the samples contain a sensitive value. If the
color is blue, the sample does not have a sensitive value,
S; = 0, while a red circle shows having a sensitive value
S; =1

In Fig. 1b, samples 0, I, 2, 4, 9 fall in the same qid group.
The rest of the samples fall in the second group. By sharing
the cluster centers for each group, we achieve 5-anonymous
data. However, in such a solution, the samples with sensitive
values are not evenly distributed. By considering the con-
straint introduced for the diversity of values in the sensitive
attribute, we obtain the solution presented in Fig. 1c. In this
solution, the data is still 5-anonymous, i.e., it has five samples
in each cluster. Nevertheless, in this case, sample 2, falls in
the same cluster with 5, 6, 7, § to evenly distribute samples
with sensitive values.

IV. EVALUATION AND DISCUSSION

In this section, we evaluate the proposed method experi-
mentally and discuss the experimental results. For evaluation,
we consider data utility and data privacy criteria and demon-
strate their trade-off [39]. Then, we present and discuss the
experimental results.

In this paper, the data analysis task that is going to
be performed on the anonymized data is classification.
Therefore, the anonymization method should alter the data
to the extent that learning high-performance classification
models are possible. We train the learning algorithms on both
original and anonymized data to evaluate the anonymization
method in terms of data utility preservation. Our method
preserves the data utility if the classification model learned
from altered data has similar performance compared to the
one learned from original data.



TABLE II: Classification performance for trained models on three different versions of Heart Disease dataset (Cleveland)

[37], [38]

Algorithm Original Data Anonymized Data Without Diversity ~ Anonymized Data by Our Method
Fl-score ~ Accuracy @ MCC  Fl-score  Accuracy MCC Fl-score  Accuracy MCC

ERT 81.0% 81.0% 0.615 81.1% 81.4% 0.625 81.0% 81.4% 0.625

Random Forest  82.5% 82.6% 0.647  80.1% 80.4% 0.603 80.0% 80.3% 0.602

XGBoost 78.9% 79.0% 0573  74.7% 75.1% 0.493 74.7% 75.1% 0.495

Decison Tree 73.8% 73.8% 0470  68.9% 69.3% 0.372 69.2% 69.8% 0.382

SVM 83.0% 83.1% 0.656 73.3% 73.3% 0.459 72.8% 72.9% 0.449

On the other hand, the anonymized data should be suffi-
ciently altered to avoid the identification of record owners.
In this paper, we address the record-linkage and attribute-
linkage attack models. We consider the property for making
samples indistinguishable in the qid group, discussed in k-
anonymity privacy model, the diversity of values in sensitive
attribute, in [-diversity, and the frequency of sensitive values,
in t-closeness.

There is a trade-off between the utility of data and privacy
of data in anonymization methods. On the one hand, we can
share no data to preserve patients’ privacy, but there will be
no utility for the data. On the other hand, we can publish the
data in its original format to maximize the data utility, but the
privacy of data subjects is going to be violated. Therefore,
in anonymization techniques, we require altering the data to
the extent that we establish a trade-off between data utility
and privacy [39].

A. Experimental Setup

In our experiments, we use the Heart Disease dataset [37],
which is one of the popular datasets publicly available on the
UCI repository. We utilize Cleveland’s processed dataset [38]
to predict the presence of heart disease (presence/absence).
The dataset contains 282 complete records, and each belongs
to one patient. The data includes 13 attributes which we
consider in this work.

Quasi-identifiers are the attributes that the adversary
can potentially obtain information about them from other
sources. In addition to quasi-identifiers, the sensitive attribute
should also be identified. In our experiments, we suppose
all 13 attributes are quasi-identifiers. Moreover, we select
the Boolean attribute for family history of coronary artery
disease as the sensitive attribute.

For evaluation of preservation of utility, we split the
dataset into train and test sets. We anonymize the training set
using our method and train several classification algorithms
based on the resulting data. Then, we measure the classifi-
cation performance on the test set. We also train the same
algorithms on the original data and the data anonymized
without considering the diversity constraint and measure the
performance of the trained classification models on the test
set. The comparison of the classification performance results
indicate the utility of anonymized data in our method.

In our experiments, we randomly select 200 samples as the
train set and the rest as the test set at each round. We repeat
the same process for 1000 rounds and report the average
results for classification performance. The algorithms used
for learning classification models are Extremely Randomized

Trees (ERT), Random Forest, XGBoost, Decision Tree, and
linear SVM. The measures used for classification perfor-

mance are Fl-score, Accuracy, and Matthews Correlation
Coefficient (MCC).

B. Experimental Results

Table II shows the classification performance results for
three different training sets, i.e., original data, anonymized
using our method, and anonymized without considering the
diversity constraint. For both anonymization methods & is set
to 10.

The classification results for the original data are at a
similar level (£0.5% due to randomness in the algorithms)
or higher than the anonymized data. However, since there
is a trade-off between privacy and utility in anonymization
[39], we may accept a loss in the utility to obtain privacy.
The results in Table II show that our method preserves the
information in data that leads to learning high-performance
models. Moreover, the classification performance difference
between our method and the approach without considering
the diversity is negligible. This indicates that introducing
the diversity constraint in our method does not significantly
affect the data utility.

We now evaluate the privacy preservation of our method
in Table III. Here, we set the value of k to 10. This means
that if the adversary has the values for quasi-identifiers for
one patient, he/she can only map his/her information to 10
records. Therefore, through our method, we avoid record-
linkage attacks. Second, our method evenly distributes the
samples with sensitive value, i.e., having a family history
of coronary artery disease, to qid groups. This weakens
the confidence of the adversary’s inference for identifying
a patient with sensitive value.

The number of patients with the sensitive value can be
different at each round. In our method, in the worst qid
group with respect to [-diversity, entropy [-diversity, and
recursive (c,l)-diversity, we have two samples with non-
sensitive value and eight with the sensitive value. In other
words, the proportion of patients with a family history of
coronary artery disease in the qid group is 80.0%, which is
optimal since the proportion of samples with the sensitive
value in the training set at this round was 70.5%. This leads
to [ = 2 in [-diversity, [ = 1.64 in entropy [/-diversity, and
!l =2 and ¢ > 4 in recursive (c,I)-diversity in Table III. In
the worst qid group with respect to the variational distance D
in ¢-closeness, we have six with non-sensitive value and four
with the sensitive value, while the proportion of samples with



TABLE III: Privacy properties of the anonymized data by
our method and the approach without diversity

No Diversity ~ Our Method
k in k-anonymity 10 10
[ in [-diversity 1 2
[ in entropy [-diversity 1 1.64
[ and c in recursive (c,/)-diversity [=1,c>1 1=2,c>4
D in t-closeness 1.06 0.38

the sensitive value in the dataset at this round was 59.0%.
This leads to variational distance D = 0.38 in f-closeness.

For the approach without diversity constraint, in the worst
qid group with respect to [-diversity, entropy [-diversity,
and recursive (c,l)-diversity, we have ten patients with the
sensitive value. This leads to [ = 1 in [-diversity, [ = 1 in
entropy [-diversity, and [ = 1 and ¢ > 1 in recursive (c,{)-
diversity in Table III. This allows the adversary to infer that
the patient had a family history of coronary artery disease
with 100% confidence. Moreover, in the worst qid group with
respect to the variational distance D in r-closeness, we have
nine records with the non-sensitive value and one with the
sensitive value. The proportion of samples with the sensitive
value in the dataset at this round was 63.0%. This increases
the variational distance between the distributions of values in
the sensitive attribute in the qid group and the whole dataset
to D = 1.06 in Table III.

The results in Table III demonstrates that by adopting
our method, we will have higher [/ in [-diversity, entropy
[-diversity, and recursive (c,/)-diversity. Moreover, the vari-
ational distance between the distributions of values in the
sensitive attribute for the train set and the qid group is lower
in our method. Therefore, regarding the diversity of values
in sensitive attributes and the attribute-linkage attack, we
observe that introducing the diversity constraint improves
patients’ privacy.

We also investigate the data privacy and data utility based
on different values of k, size of qid groups. For each k, we
have 100 rounds that in each we randomly split the data
into the train and test sets. The classification performance
results are the average results for all rounds. The privacy
results are the worst results in all rounds and qid groups.
We perform these experiments based on our method and the
anonymization approach without the diversity constraint and
show the results in Figs. 2 and 3 for comparison.

Figs. 2a-2c show the results based on F1-score, Accuracy,
and MCC metrics. The patterns in the results show that the
higher the qid group size (k), the lower the classification
performance. On the other hand, increasing the value of
k improves the privacy with respect to the record-linkage
attack model. These figures illustrate the trade-off between
the privacy and data utility.

The results in Figs. 3a-3d exhibit the privacy properties of
the anonymized data. Regarding the attribute-linkage attack
model, the results display that the data anonymized by our
method has higher privacy properties than the anonymized
data without diversity constraint. Increasing the value of k
significantly improves the diversity and frequency of values

in the sensitive attribute, compared to the approach without
considering the diversity constraint, but without any major
loss in terms of classification performance.

The experimental results show that our method pro-
vides privacy against record-linkage and attribute-linkage
attacks. Furthermore, the utility of the data is retained
after anonymization, allowing learning of high-performance
classification models. The slight degradation of utility is
the cost for providing patients privacy, which is a common
phenomenon in anonymization approaches [39].

V. CONCLUSION

In this paper, we have proposed a method for obtaining
anonymized data by ensuring that data samples are indistin-
guishable in qid groups while considering the diversity and
frequency of values in the sensitive attribute. Our method is
based on constrained optimization and clustering of the sam-
ples into qid groups by jointly considering the k-anonymity,
[-diversity, and t-closeness privacy models. The evaluation
results show that the proposed method retains data utility
while reducing the privacy concerns related to data sharing.
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